New Project to Link Extreme Weather Events, Atmospheric Biodiversity and Human Health

A new ICTA-UAB project led by researcher Jordina Belmonte will study the effects of extreme meteorological events on the biological biodiversity present in the atmosphere in order to predict changes in the environment and possible affectations on human health.

Bolivian Amazon on road to deforestation

Amazon biodiversity hotspot to suffer even more “alarming” losses after contentious law passed, according to a study involving ICTA-UAB researchers.

ICTA-UAB’s success: five ERC grants in two years

The Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) has been awarded five European Research Council (ERC) grants in two years, which is about ten per cent of all ERC grants arriving in Catalonia over the period from the end of 2015 to the end of 2017.

Scientists Alert of Swift Degradation of Marine Ecosystems and Grave Consequences for the Planet

A book edited by researchers from the ICTA-UAB, the UB, the CNRS and the IEO addresses the concept of "animal forest" and highlights the importance of the role seas and oceans have in combating climate change.

New ICTA-UAB map shows success, concerns and challenges of the transition away from fossil fuels and coal industry in Australia

Resistance against massive coal-mining in Australia and a growing movement for a ‘just transition’ from fossil fuels have enjoyed some success but face massive challenges, as shown in a new map developed by researchers from the international ACKnowl-EJ project of the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB)  and the Australian Environmental Justice (AEJ) research team at the Centre for Urban Research (RMIT University.

ICTA-UAB researcher Victoria Reyes-García receives an ERC Consolidator Grant

ICREA researcher at ICTA-UAB Victoria Reyes- García has been graced with a Consolidator Grant of the European Research Council (ERC) for the development of a project aimed at bringing insights from local knowledge to climate change research.

Research to study the health effects of forests

The ICTA-UAB, CREAF and the "la Caixa" Bank Foundation recently presented the project "Healthy Forests for a Healthy Society".

Blockadia map by ICTA-UAB reveals global scale of anti-fossil fuel movement

A new interactive map by researchers of the Institute of Environmental Science and Technology of the Universitat Autonoma de Barcelona (ICTA-UAB) reveals the worldwide impact of resistance direct actions by people putting their own bodies in the way of fossil fuel projects.

Launch of the Alliance of Severo Ochoa Centres and Maria de Maeztu Units of Excellence

​ The Secretary of State for R&D+i, Carmen Vela, chaired the kickoff meeting of the new Severo Ochoa and Maria Maeztu Alliance of Excellence.

Green gentrification can limit the favourable effects of green areas on health

A scientific research conducted by ICTA-UAB and IMIM suggests that more socially disadvantaged neighbours do not benefit equally from the effects newly created green areas have on health.

Oil contamination in the Amazon modifies chemical composition of rivers

A scientific study by the ICTA-UAB and ISS-EUR quantifies the environmental impact of oil extraction activities and contamination in headwaters of the Amazon.

ICTA-UAB researchers alert that oil palm plantations produce infertility in tropical lands

Oil palm plantations are replacing 40% of tropical forests and 32% of basic grain crops, according to an ICTA-UAB research conducted in Guatemala.

EJAtlas Includes 2,100 Case Studies on Socio-Environmental Conflicts Around the World

The Environmental Justice Atlas (EJAtlas), created by researchers of the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB), currently includes 2,100 cases of ecological distribution conflicts identified in different parts of the world.

Ice age thermostat prevented extreme climate cooling

During the ice ages, an unidentified regulatory mechanism prevented atmospheric CO2 concentrations from falling below a level that could have led to runaway cooling, reports a study conducted by researchers of the ICTA-UAB and published online in Nature Geoscience this week.

The New Theory of Economic “Agrowth” Contributes to the Viability of Climate Policies

 ICTA-UAB researcher Jeroen van den Bergh publishes in Nature Climate Change a study in which he proposes a new economic theory compatible with the fight against climate change.

New ICTA-UAB 'Welcome Guide'

The new ICTA-UAB 'Welcome Guide' it is at your disposal now. With this document, we aim to help you discover the basics of the PhD programme, ICTA-UAB’s structure, etc.
About us
The ICTA-UAB's building, an emblematic construction

Located at the southern entrance to the UAB campus, the headquarters of ICTA-ICP has a surface area of 9,400 square metres distributed on 6 floors, four of which are equipped with offices, laboratories and common areas, one with a car park and another with several storage areas, including a large warehouse with fossils and a greenhouse. The construction cost 8 million euros and was co-financed by European funds for regional development projects (2007-2013 FEDER programme of Catalonia) and the Spanish Ministry of Economy and Competitiveness.

The new offices for ICTA and ICP were designed with the highest possible criteria of sustainability by two architecture groups, dataAE and H Arquitectes. The objective was clearly focused on sustainability regarding water and energy consumption, as well as the building materials used. The building achieved a LEED GOLD certification by the US Green Building Council, with a score of 73 points. The certification is based on international standards and awarded to those with a strong commitment to the environment.

Heat in the Winter and Cooling in the Summer

The building consists mainly of offices and laboratories which, given their activities, tend to generate heat. The building's design aims to make use of this heat in the winter and disperse it during the summer through natural ventilation. Four inner courtyards make up a large central atrium which guarantees an optimal quality of natural light for all the plants. A concrete structure with high thermal inertia works directly together with the passive comfort systems of the building.

A Bioclimatic Outer Skin

The outer façade of the building contains a “bioclimatic skin”, a system comparable to a greenhouse which regulates the storage of solar radiation and ventilation through a series of automatic openings and closings. Its outer skin opens and closes automatically depending on the temperature, humidity, wind or sunlight, in order to offer the best bioclimatic conditions inside the building at all times. Thus, an intermediate area with temperatures between 16 and 30ºC is created, and this acts as a thermal cushion which helps to maintain a temperature of comfort in the working areas. At the same time, it reduces energy demands and improves temperatures inside in a completely natural way. These areas are equipped with the most adequate plants for each space, and therefore favour the presence of nature inside the building, while helping to regulate humidity.

The working areas are found inside this area, with an improved climate thanks to the isolation of closed structures, comparable to large "wooden boxes", which contribute to providing conditions of comfort.

The building's control system has been programmed so that the bioclimatic skin, office windows, and all active climate controls work in coordination to prioritise a passive performance system and minimise the use of non-renewable energies. A complex automated computer control system processes and manages data to ensure the best levels of comfort and energy usage. The building makes use of all contact existing between its two underground stories and the earth as a preliminary stage for the building's air renovation, through geothermal systems which take advantage of underground temperatures. It will also give support to the passive systems at specific times, thanks to a cooling machine with high efficiency magnetic levitation compressors. Thanks to these elements, the building was certified as being in the A category of energy efficiency, with up to 62% less consumption than what is needed to run a conventional building of similar dimensions.

A 90% Reduction in Water Consumption

The building takes into account the full cycle of water usage in order to optimise consumption needs based on the reuse of rainwater and white, grey and black waters. By doing so, there is a 90% reduction in the water consumption needed for a conventional building of similar dimensions. Highly efficient elements have been installed, such as dry urinals, low-capacity toilets, tap aerators and sensors, and water-wise landscaping. Rainwater is gathered from the roof of the building, the cemented areas and the adjoining building: one part will be for irrigation and the rest will be filtered and disinfected, and later used for dishwashers and toilets. Grey waters will be regenerated and used for flushing. Wastewater will be treated through phyto-purification and the solid part will be used as compost.

Reduction in the Environmental Impact of Construction Materials

With the aim of reducing the amount of construction materials used, no false ceilings or technical floors were installed, and constructive solutions and materials with lower ecological baggage were put to use, thereby lowering energy consumption and emissions both when constructing the building and producing waste. Materials were chosen with mineral structures containing high thermal inertia and a long useful life, combined with materials of low environmental impact. Importance was given to organic or recycled materials and reversible and reusable dry construction systems. The earth dug up was later used around the building, thus making use of the area's resources.

Video of the ICTA-UAB Building (4m 20s) (in Catalan)

Photos of the ICTA-UAB Building
ICTA-UAB Building: Outer façade ICTA-UAB Building: Interior spaces (1) ICTA-UAB Building: Interior spaces (2)
ICTA-UAB Building: Resting area ICTA-UAB Building: Greenhouse ICTA-UAB Building: Research Labs
ICTA-UAB Building: Greenhouse ICTA-UAB Building: Ouside view ICTA-UAB Building: Aerial view
ICTA's Activities