La asociación Amics de la UAB premia al ICTA-UAB

El ICTA-UAB recibirá uno de los premios que la asociación Amics de la UAB entrega cada año en el marco de la Festa Amics UAB.

Iron availability in seawater, key to explaining the amount and distribution of fish in the oceans

People tend to pay more attention to how much food they are eating, than with how rich their diet is in essential micronutrients like iron.

Mining waste dumped into Portmán Bay continues to release metals into the sea 25 years later

The waters of the Mediterranean Sea continue to receive dissolved metals from the mining waste deposited in Portmán Bay (Murcia) 25 years after the cessation of mining activity.

A new ICTA-UAB project to assess the impacts of micro- and nano-plastics in the tropical and temperate oceans

A new project led by ICTA-UAB researcher Patrizia Ziveri is one of five projects selected for funding by the Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans).

Big data reveals extraordinary unity underlying life’s diversity

Limits to growth lie at the heart of how all living things function, according to a new study carried out by ICTA-UAB researchers  .

Jeroen van den Bergh, awarded an honorary doctorate by the Open University of the Netherlands

The environmental economist at ICTA-UAB Prof. Dr Jeroen van den Bergh was awarded an honorary doctorate by the Open University of the Netherlands.

Paris Agreement hampered by inconsistent pledges, new ICTA-UAB research finds

Some countries' Paris Climate Agreement pledges may not be as ambitious as they appear, according a new study carried out by researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB).

High lead concentrations found in Amazonian wildlife

Researchers from ICTA-UAB and the UVic-UCC detect high levels of lead concentration in wildlife samples from the Peruvian Amazon caused by lead-based ammunition and oil-related pollution in extraction areas.

Study gauges trees’ potential to slow global warming in the future

The Pyrenean forests, the Cantabrian coast and Galicia show an important potential to accumulate even larger amounts of carbon dioxide in the future and thus help to slow down the increase in CO2 concentrations which are warming the planet.

Why do environmentalists eat meat?

A study by researchers at the ICTA-UAB analyses the reasons why environmentally-minded scientists find it difficult to give up meat consumption, one of the world's greatest environmental problems.

La gestión del verde urbano permite incrementar la presencia de pájaros en las ciudades

Incrementar la biodiversidad del verde urbano permitiría aumentar la presencia de aves paseriformes en las ciudades mediterráneas, según un estudio científico realizado por investigadores del Instituto de Ciencia y Tecnología Ambientales de la Universidad Autónoma de Barcelona (ICTA-UAB) que analiza qué estrategias hay que implementar sobre la vegetación urbana para conseguir "naturalizar" las ciudades favoreciendo la entrada de flora y fauna.

The Ebro River annually dumps 2.2 billion microplastics into the sea

An ICTA-UAB study analyses the distribution and accumulation of microplastics from one of the main rivers of the western Mediterranean.

European project to support rooftop greenhouses projects

The Institute of Environmental Science and Technology from the Universitat Autònoma de Barcelona (ICTA-UAB) is launching an open call to support rooftop greenhouse projects, in the framework of GROOF Project.

El ICTA-UAB participa en el proyecto que habilitará 10 escuelas de Barcelona como refugios climáticos

El Instituto de Ciencia y Tecnología Ambientales de la Universidad Autónoma de Barcelona (ICTA-UAB) es una de las instituciones impulsoras de un proyecto que habilitará 10 escuelas de Barcelona como refugios climáticos para disminuir el impacto de las altas temperaturas del verano.

New study dismisses green growth policies as a route out of ecological emergency

Researchers from ICTA-UAB and the Goldsmiths University of London suggest that emissions reduction is only compatible with a lower economical degrowth or a degrowth scenario.
News
Climate Change Threatens World's Largest Seagrass Carbon Stores

Date: 2018-03-19

Canvi climàtic amenaça les reserves de carboni més grans del planeta


Shark Bay seagrass carbon storage hotspot suffers alarming losses after a devastating marine heat wave, according to a study led by ICTA-UAB researchers.

The loss of seagrass would have released up to nine million metric tons of carbon dioxide (CO2) into the atmosphere.

In the summer of 2010-2011 Western Australia experienced an unprecedented marine heat wave that elevated water temperatures 2-4°C above average for more than 2 months. The heat wave resulted in defoliation of the dominant Amphibolis antarctica seagrass species across the iconic Shark Bay World Heritage Site. Researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB), in collaboration with scientists from Australia, Spain, Malaysia, the United States and the Kingdom of Saudi Arabia, alert us of the major carbon dioxide (CO2) emissions resulting from this loss of seagrass meadows at Shark Bay — one of the largest remaining seagrass ecosystems on Earth.

Over the three years following the event, the loss of seagrass released up to nine million metric tons of carbon dioxide (CO2) into the atmosphere. This amount is roughly the equivalent to the annual CO2 output of 800,000 homes, two average coal-fired power plants, or 1,600,000 cars driven for 12 months. It also potentially raised Australia’s annual estimate of national land-use change CO2 emissions by up to 21%.

The ICTA-UAB and Edith Cowan University (ECU)-led international research, recently published in Nature Climate Change, has estimated that Shark Bay has the largest carbon stores reported for a seagrass ecosystem, containing up to 1.3% of the total carbon stored in seagrass soils worldwide. 

Collaborating researchers from the Department of Biodiversity, Conservation and Attractions of Western Australia mapped 78% of the Marine Park area within the UNESCO World Heritage Site in 2014 and found a 22% loss of seagrass habitat as compared to the 2002 baseline. If extrapolated to the entire Shark Bay’s seagrass extent, this is equivalent to a loss of about 1,000 km2 of meadows.

"Yet the widespread losses in the summer of 2010/11 were unprecedented. The net loss of seagrass extent was accompanied by a dramatic decline in seagrass cover. What remained was sparser, with ‘dense’ seagrass areas declining from 72% in 2002 to 46% in 2014", explains Ariane Arias-Ortiz, PhD candidate at ICTA-UAB and first author of the work.

“This is significant, as seagrass meadows are CO2 sinks, known as 'Blue Carbon ecosystems'. They take up and store carbon dioxide in their soils and biomass through biosequestration. The carbon that is locked in the soils is potentially there for millennia if seagrass ecosystems remain intact", explains Professor Pere Masqué, co-author of the study and researcher at ICTA-UAB and the UAB Department of Physics. 


Dr Oscar Serrano, ECU researcher and also a co-author adds “so when you have an event such as the losses at Shark Bay, you not only lose the seagrass as a way of removing CO2, but the sequestered carbon is released back into the atmosphere as CO2 during seagrass matter decomposition”.

"Although seagrass meadows are amenable to restoration, more importantly, we should be looking at avoided loss of the seagrass carbon stores, because CO2 emission from degraded seagrass ecosystems greatly surpasses the annual sequestration capacity of healthy meadows", Ariane Arias-Ortiz explains.


"With climate change forecast to increase the frequency of extreme weather events, the permanence of these carbon stores is compromised, further stressing the importance of reducing green-house gas emissions, and implementing management actions to avoid adverse feedbacks on the climate system”, she says.

To conduct the study, researchers used in situ sampling from 50 sites and soil modelling to make their calculations of potential CO2 release.

Planning ahead for future climate events

While the Shark Bay Marine Reserves Management Plan 1996-2006 offers protections against local threats such as over-fishing and nutrient inputs from industry, agriculture and tourism, there is currently nothing in place to deal with global threats such as marine heat waves.

“We need to advance our understanding of how seagrass ecosystems, especially those living close to their thermal tolerance, will respond to global change threats, both direct and through interactive effects with local pressures”, said Professor Paul Lavery, ECU researcher and also a co-author. “We have seen how quickly losses can occur, and once destroyed, the capacity of seagrass meadows to recover is limited and slow, and largely depends on the arrival of seeds or seedlings”, he adds.

Plans for future catastrophes may include removing seagrass detritus to prevent phytoplankton and bacterial blooms which consume oxygen and reduce light reaching the seagrasses. Seagrass restoration is also an alternative and its effectiveness is presently being tested by Professor Kendrick from the University of Western Australia and co-author of the study. 

'A marine heat wave drives massive losses from the world’s largest seagrass carbon stocks’ is published in Nature Climate Change. https://www.nature.com/articles/s41558-018-0096-y

ICTA's Activities