Mining waste dumped into Portmán Bay continues to release metals into the sea 25 years later

The waters of the Mediterranean Sea continue to receive dissolved metals from the mining waste deposited in Portmán Bay (Murcia) 25 years after the cessation of mining activity.

A new ICTA-UAB project to assess the impacts of micro- and nano-plastics in the tropical and temperate oceans

A new project led by ICTA-UAB researcher Patrizia Ziveri is one of five projects selected for funding by the Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans).

Big data reveals extraordinary unity underlying life’s diversity

Limits to growth lie at the heart of how all living things function, according to a new study carried out by ICTA-UAB researchers  .

Jeroen van den Bergh, awarded an honorary doctorate by the Open University of the Netherlands

The environmental economist at ICTA-UAB Prof. Dr Jeroen van den Bergh was awarded an honorary doctorate by the Open University of the Netherlands.

Paris Agreement hampered by inconsistent pledges, new ICTA-UAB research finds

Some countries' Paris Climate Agreement pledges may not be as ambitious as they appear, according a new study carried out by researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB).

High lead concentrations found in Amazonian wildlife

Researchers from ICTA-UAB and the UVic-UCC detect high levels of lead concentration in wildlife samples from the Peruvian Amazon caused by lead-based ammunition and oil-related pollution in extraction areas.

Study gauges trees’ potential to slow global warming in the future

The Pyrenean forests, the Cantabrian coast and Galicia show an important potential to accumulate even larger amounts of carbon dioxide in the future and thus help to slow down the increase in CO2 concentrations which are warming the planet.

Why do environmentalists eat meat?

A study by researchers at the ICTA-UAB analyses the reasons why environmentally-minded scientists find it difficult to give up meat consumption, one of the world's greatest environmental problems.

La gestión del verde urbano permite incrementar la presencia de pájaros en las ciudades

Incrementar la biodiversidad del verde urbano permitiría aumentar la presencia de aves paseriformes en las ciudades mediterráneas, según un estudio científico realizado por investigadores del Instituto de Ciencia y Tecnología Ambientales de la Universidad Autónoma de Barcelona (ICTA-UAB) que analiza qué estrategias hay que implementar sobre la vegetación urbana para conseguir "naturalizar" las ciudades favoreciendo la entrada de flora y fauna.

The Ebro River annually dumps 2.2 billion microplastics into the sea

An ICTA-UAB study analyses the distribution and accumulation of microplastics from one of the main rivers of the western Mediterranean.

European project to support rooftop greenhouses projects

The Institute of Environmental Science and Technology from the Universitat Autònoma de Barcelona (ICTA-UAB) is launching an open call to support rooftop greenhouse projects, in the framework of GROOF Project.

El ICTA-UAB participa en el proyecto que habilitará 10 escuelas de Barcelona como refugios climáticos

El Instituto de Ciencia y Tecnología Ambientales de la Universidad Autónoma de Barcelona (ICTA-UAB) es una de las instituciones impulsoras de un proyecto que habilitará 10 escuelas de Barcelona como refugios climáticos para disminuir el impacto de las altas temperaturas del verano.

New study dismisses green growth policies as a route out of ecological emergency

Researchers from ICTA-UAB and the Goldsmiths University of London suggest that emissions reduction is only compatible with a lower economical degrowth or a degrowth scenario.

Indigenous knowledge, key to a successful ecosystem restoration

Ecological restoration projects actively involving indigenous peoples and local communities are more successful. This is the result of a study carried out by the Institute of Environmental Science and Technology at the Universitat Autònoma de Barcelona (ICTA-UAB).
News
High lead concentrations found in Amazonian wildlife

Date: 2019-09-02




Researchers from ICTA-UAB and the UVic-UCC detect high levels of lead concentration in wildlife samples from the Peruvian Amazon caused by lead-based ammunition and oil-related pollution in extraction areas.

It is in industrialised countries and regions of the world where one can find the highest concentrations of lead, the world's most widespread neurotoxical accumulative metal. Thus, it was presumed that the Amazon, the world's largest expanse of tropical rainforest containing the highest levels of biocultural and cultural diversity, would contain a low amount of urban or industrial contaminants due to its remoteness and low human impact.

A group of researchers from the Institute of Environmental Science and Technology and the Department of Animal Health and Anatomy at the Universitat Autònoma de Barcelona (ICTA-UAB), and the Central University of Catalonia/Vic University, for the first time have evaluated lead concentrations and isotopic fingerprints in free-ranging wildlife in remote areas of the Peruvian Amazon. For the study, liver samples were collected from 315 animals from 18 different species, hunted for food by local indigenous peoples (Quechua, Achuar and Yagua). These areas under study are very remote and only accessible after a 4-5 day boat trip along the local rivers. Some of these areas are also located within the second most productive oil concession of the country, operating since the 1970s.

High concentrations of lead were found in the livers of Amazon wild mammals and birds, animals which are consumed daily by the local indigenous population. These values are higher than those observed among wild animals found in industrialised countries. The presence of this unexpectedly high level of lead in Amazonian wildlife poses a health risk for the local population, which relies on subsistence hunting.

Half of all samples analysed contained more than the 0.5 miligrams per kilo which European regulation considers to be the limit for human consumption of animal entrails, and 91% contained more than the 0.1 miligrams considered a suitable level for human consumption of meat in general. A very high risk for the population, taking into account that almost thirty of the samples analysed contained far higher levels of lead.

The researchers also demonstrated that the main sources of lead are the extended use of lead-based ammunition, as well as pollution related to oil extraction. In fact, lead-based ammunition could be an underestimated problem throughout the continent of South America. These results suggest that lead has entered the trophic chain in areas where human population depends on subsistence hunting. Thus, it is not likely a unique problem, but one that affects indigenous people around the world who use lead-based ammunition.

In addition, the fact of having found oil-related lead in wildlife suggests that other toxic compounds related to oil activities may have also entered the trophic chain. Indeed, in the northern Peruvian Amazon, oil extraction activities have generated an important environmental impact through the daily spillage of lead-rich wastewater into the environment.

Due to the high dependence of indigenous people globally on subsistence hunting and the extended use of lead-based ammunition, jointly with the advance of oil activities in tropical rainforests (oil and gas reserves overlap with 30% of the world's rainforests), these results uncover an important health risk for tropical wildlife conservation and for local human communities depending on these animals as their main source of protein.

Finally, the study further illustrates how remote natural areas also contain yet another ubiquitous anthropogenic footprint. This might be extended throughout the Amazonian ecosystem and other rainforests around the world, illustrating how human impact reaches further than usually envisaged, and the expansion of anthropogenic contaminants from industrial centres to the most remote areas of the planet.

The study, published this week in the journal Nature Sustainability, included the involvement of Mar Cartró Sabaté, researcher at the Institute of Environmental Science and Technology at the Universitat Autònoma de Barcelona (ICTA-UAB); Pedro Mayor, Department of Animal Health and Anatomy at the UAB; Martí Orta, researcher at the Central University of Catalonia/Vic University and ICTA-UAB; and Antoni Rosell, ICREA researcher at the ICTA-UAB.

Original article:
Cartró-Sabaté, M., Mayor, P., Orta-Martínez, M., Rosell-Melé, A. Anthropogenic lead in Amazonian wildlife. Nature Sustainability. 2019. doi.org/10.1038/s41893-019-0338-7

ICTA's Activities