ICTA-UAB demands the UAB to reduce number of flights

Given our current climate emergency, recently acknowledged by the UAB, the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) has drawn up a proposal urging the University to put into action a new travel policy to tackle one of its most polluting activities: Flying.

La asociación Amics de la UAB premia al ICTA-UAB

L’ICTA-UAB va rebre un dels premis que l’associació Amics de la UAB lliura cada any en el marc de la Festa Amics UAB.

New assessment finds EU electricity decarbonization discourse in need of overhaul

It’s well known that the EU is focusing its efforts on decarbonizing its economy.

ICTA-UAB to organize the International Conference 2020 on Low-Carbon Lifestyle Changes

ICTA-UAB will host the International Conference 2020 on Low-Carbon Lifestyle Changes with the aim of exploring the role of changing lifestyles in climate change mitigation.

Iron availability in seawater, key to explaining the amount and distribution of fish in the oceans

People tend to pay more attention to how much food they are eating, than with how rich their diet is in essential micronutrients like iron.

Mining waste dumped into Portmán Bay continues to release metals into the sea 25 years later

The waters of the Mediterranean Sea continue to receive dissolved metals from the mining waste deposited in Portmán Bay (Murcia) 25 years after the cessation of mining activity.

A new ICTA-UAB project to assess the impacts of micro- and nano-plastics in the tropical and temperate oceans

A new project led by ICTA-UAB researcher Patrizia Ziveri is one of five projects selected for funding by the Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans).

Big data reveals extraordinary unity underlying life’s diversity

Limits to growth lie at the heart of how all living things function, according to a new study carried out by ICTA-UAB researchers  .

Jeroen van den Bergh, awarded an honorary doctorate by the Open University of the Netherlands

The environmental economist at ICTA-UAB Prof. Dr Jeroen van den Bergh was awarded an honorary doctorate by the Open University of the Netherlands.

Paris Agreement hampered by inconsistent pledges, new ICTA-UAB research finds

Some countries' Paris Climate Agreement pledges may not be as ambitious as they appear, according a new study carried out by researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB).

High lead concentrations found in Amazonian wildlife

Researchers from ICTA-UAB and the UVic-UCC detect high levels of lead concentration in wildlife samples from the Peruvian Amazon caused by lead-based ammunition and oil-related pollution in extraction areas.

Study gauges trees’ potential to slow global warming in the future

The Pyrenean forests, the Cantabrian coast and Galicia show an important potential to accumulate even larger amounts of carbon dioxide in the future and thus help to slow down the increase in CO2 concentrations which are warming the planet.

Why do environmentalists eat meat?

A study by researchers at the ICTA-UAB analyses the reasons why environmentally-minded scientists find it difficult to give up meat consumption, one of the world's greatest environmental problems.

La gestión del verde urbano permite incrementar la presencia de pájaros en las ciudades

Incrementar la biodiversidad del verde urbano permitiría aumentar la presencia de aves paseriformes en las ciudades mediterráneas, según un estudio científico realizado por investigadores del Instituto de Ciencia y Tecnología Ambientales de la Universidad Autónoma de Barcelona (ICTA-UAB) que analiza qué estrategias hay que implementar sobre la vegetación urbana para conseguir "naturalizar" las ciudades favoreciendo la entrada de flora y fauna.

The Ebro River annually dumps 2.2 billion microplastics into the sea

An ICTA-UAB study analyses the distribution and accumulation of microplastics from one of the main rivers of the western Mediterranean.

European project to support rooftop greenhouses projects

The Institute of Environmental Science and Technology from the Universitat Autònoma de Barcelona (ICTA-UAB) is launching an open call to support rooftop greenhouse projects, in the framework of GROOF Project.

El ICTA-UAB participa en el proyecto que habilitará 10 escuelas de Barcelona como refugios climáticos

El Instituto de Ciencia y Tecnología Ambientales de la Universidad Autónoma de Barcelona (ICTA-UAB) es una de las instituciones impulsoras de un proyecto que habilitará 10 escuelas de Barcelona como refugios climáticos para disminuir el impacto de las altas temperaturas del verano.

New study dismisses green growth policies as a route out of ecological emergency

Researchers from ICTA-UAB and the Goldsmiths University of London suggest that emissions reduction is only compatible with a lower economical degrowth or a degrowth scenario.
News
Study gauges trees’ potential to slow global warming in the future

Date: 2019-09-02


The Pyrenean forests, the Cantabrian coast and Galicia show an important potential to accumulate even larger amounts of carbon dioxide in the future and thus help to slow down the increase in CO2 concentrations which are warming the planet.

The research, led by the ICTA-UAB and the Stanford University (USA) warns that trees can only absorb a fraction of carbon dioxide in the atmosphere and their ability to do so beyond 2100 is unclear. The results show that carbon dioxide levels expected by the end of the century should increase plant biomass by 12%, enabling plants and trees to store more carbon dioxide.

An international team led by scientists at Stanford University and the Autonomous University of Barcelona finds reason to hope trees will continue to suck up carbon dioxide at generous rates through at least the end of the century. However, the study published Aug. 12 in Nature Climate Change warns that trees can only absorb a fraction of carbon dioxide in the atmosphere and their ability to do so beyond 2100 is unclear.

“Keeping fossil fuels in the ground is the best way to limit further warming, but stopping deforestation and preserving forests so they can grow more is our next-best solution,” said study lead author César Terrer, researcher at the Institute of Environmental Science and Technology (ICTA-UAB) and a postdoctoral scholar in Earth system science in Stanford’s School of Earth, Energy & Environmental Sciences. 

Weighing carbon dioxide
Carbon dioxide – the dominant greenhouse gas warming the earth – is food for trees and plants. Combined with nutrients like nitrogen and phosphorus, it helps trees grow and thrive. But as carbon dioxide concentrations rise, trees will need extra nitrogen and phosphorus to balance their diet. The question of how much extra carbon dioxide trees can take up, given limitations of these other nutrients, is a critical uncertainty in predicting global warming.

“Planting or restoring trees is like putting money in the bank. Extra growth from carbon dioxide is the interest we gain on our balance. We need to know how high the interest rate will be on our carbon investment,” said co-author Rob Jackson, professor in Earth System Science at Stanford.
 
Several individual experiments, such as fumigating forests with elevated levels of carbon dioxide and growing plants in gas-filled chambers, have provided critical data but no definitive answer globally. To more accurately predict the capacity of trees and plants to sequester carbon dioxide in the future, the researchers synthesized data from all elevated carbon dioxide experiments conducted so far – in grassland, shrubland, cropland and forest systems – including ones the researchers directed.

Using statistical methods, machine-learning, models and satellite data, they quantified how much soil nutrients and climate factors limit the ability of plants and trees to absorb extra carbon dioxide. Based on global datasets of soil nutrients, they also mapped the potential of carbon dioxide to increase the amount and size of plants in the future, when atmospheric concentrations of the gas could double.

Their results show that carbon dioxide levels expected by the end of the century should increase plant biomass by 12 percent, enabling plants and trees to store more carbon dioxide – an amount equivalent to six years of current fossil fuel emissions. The study highlights important partnerships trees forge with soil microbes and fungi to help them take up the extra nitrogen and phosphorus they need to balance their additional carbon dioxide intake. It also emphasizes the critical role of tropical forests, such as those in the Amazon, Congo and Indonesia, as regions with the greatest potential to store additional carbon.

“We have already witnessed indiscriminate logging in pristine tropical forests, which are the largest reservoirs of biomass in the planet. We stand to lose a tremendously important tool to limit global warming,” said Terrer. 

Original article:
César Terrer Moreno; Rob Jackson. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change. https://www.nature.com/articles/s41558-019-0545-2
 

ICTA's Activities